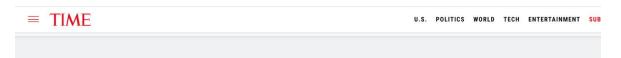
Intersection of water quality, human health, and aquatic ecosystems

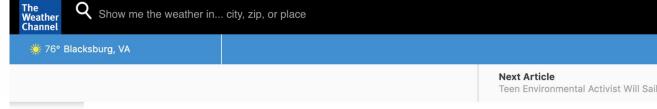
Brian D Badgley
Environmental Microbiology
VT School of Plant and Environmental Sciences
badgley@vt.edu


Flesh-eating bacteria in New Jersey reveal one possible effect of climate change, study

says

By Susan Scutti, CNN

① Updated 11:49 AM ET, Tue June 18, 2019



HEALTH . INFECTIOUS DISEAS

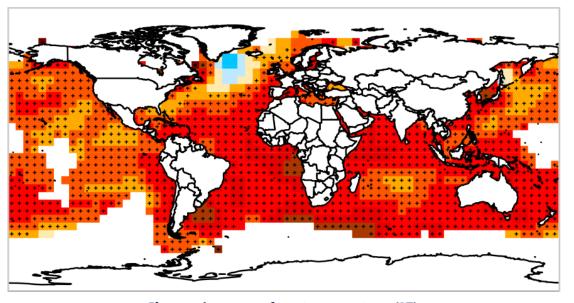
Climate Change May Be Spreading Flesh-Eating Bacteria to Unexpected Waters

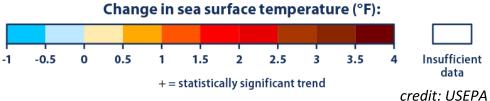
Related Stories

NEWS

More Flesh-Eating Bacteria Cases in the Gulf of Mexico and Elsewhere Are Likely Because of Climate Change

By Ron Brackett · July 30 2019 07:14 AM EDT · weather.com


Key Topics

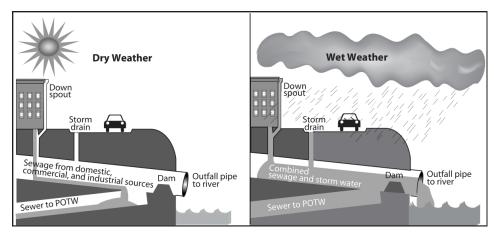

- Global change factors affecting water quality
- Recreational Contact
- Harmful Algal Blooms
- Opportunistic Pathogens (Vibrio)
- Next Steps

Change Factors

Increased temperature, sea level, and storm intensity means surface and coastal ground waters are getting:

- Warmer
- Saltier
- Reduced ice cover
- More runoff and connection to coastal infrastructure

credit: Virginian-Pilot


Recreational Contact

Traditional focus on fecal pathogens resulting from sewage contamination:

- Recreational contact and shellfish harvesting
- Many bacterial, protist, and viral pathogens: Salmonella, Campylobacter, Giardia, Norovirus
- 2018 U.S. estimate: 90M illnesses costing ~\$3B annually⁽¹⁾

credit: WHOI

credit: Wikipedia

Recreational Contact

Under climate change:

- Survival of fecal pathogens and indicators generally decreases in warmer temperatures and salinity
- However, more intense storms and flooding (plus population growth and aging infrastructure) may increase release of sewage into surface waters

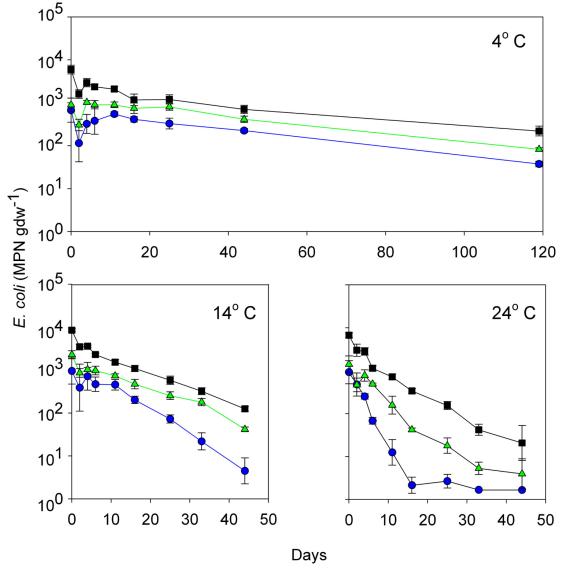


Fig. 3. *E. coli* inactivation in sediments. ● – sediment A, ■ – sediment B, ▲ – sediment C. Error bars show standard deviations computed for logarithms of concentrations.

credit: Grazio-Hadzick et al. 2010⁽²⁾

Harmful Algal Blooms (HABs)

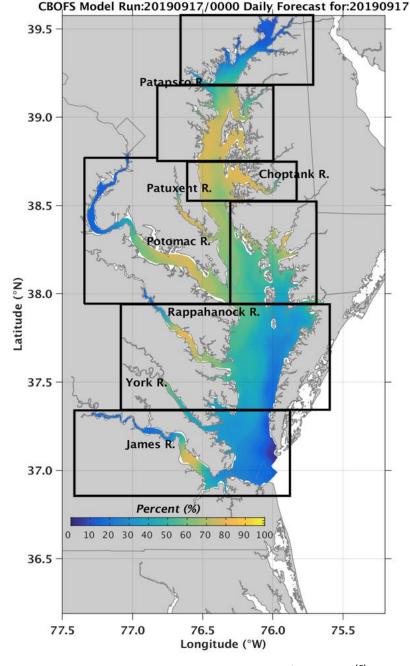
Excessive growth of native cyanobacteria or algae:

- Microcystis, Pfisteria, Karenia, Pseudo-nitzschia
- Produce toxins that contaminate drinking water, shellfish, and coastal aerosols
- Many toxins with symptoms similar to flu, foodborne illness
- Human health impacts poorly understood due to lack of data

credit: European Space Agency via Huisman et al. 2018⁽³⁾

Harmful Algal Blooms (HABs)

HABs are natural but increasing⁽⁴⁾:

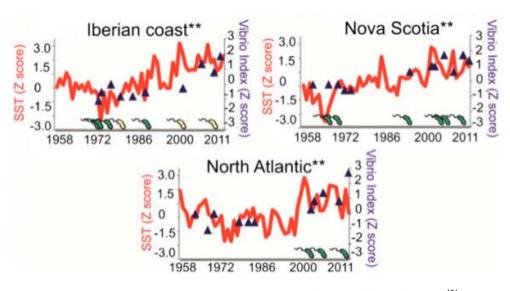

- Driven mainly by nutrient inputs and warming
- Nutrient inputs driven by land use and changing precipitation
- Mean number of HAB days projected to increase ~3-5X by 2090
- Illness can be reported through OHHABS⁽⁵⁾

Linear-Growth Scenario 2050 2090

Opportunistic Pathogens

Many native aquatic microbes are opportunistic pathogens:

- Legionella, Mycobacterium, Naegleria
- Vibrio including cholerae, parahaemolyticus, vulnificus
- Infection via shellfish ingestion and open wound contact
- Historically considered in Gulf of Mexico but recent Mid-Atlantic infections indicate spread


Probability(%) of Vibrio vulnificus in the Chesapeake Bay

credit: NCCOS(6)

Vibrio expansion

Spread of *Vibrio* to higher latitudes is theorized to be allowed by warmer waters

- Historical data indicate increasing concentrations post-WWII in North Atlantic⁽⁷⁾
- Expected to be problematic on the East coast
- Models attempt to match risk projections with observed illness⁽⁸⁾

credit: Vezulli et al. 2016⁽⁸⁾

credit: Baker-Austin et al. 2012⁽⁸⁾

Possible Next Steps

- Consider recent patient contact with water bodies
- Educate physicians about illnesses and symptoms related to these issues that they may not currently suspect
- Consider contributing to and engaging with health monitoring efforts as an organized group

References

- 1. DeFlorio-Barker, S., Wing, C., Jones, R. M., & Dorevitch, S. (2018). Estimate of incidence and cost of recreational waterborne illness on United States surface waters. *Environmental Health*, *17*(1), 3.
- 2. Garzio-Hadzick, A., Shelton, D. R., Hill, R. L., Pachepsky, Y. A., Guber, A. K., & Rowland, R. (2010). Survival of manure-borne E. coli in streambed sediment: effects of temperature and sediment properties. *water research*, *44*(9), 2753-2762.
- 3. Huisman, J., Codd, G. A., Paerl, H. W., Ibelings, B. W., Verspagen, J. M., & Visser, P. M. (2018). Cyanobacterial blooms. *Nature Reviews Microbiology*, *16*(8), 471.
- 4. Chapra, S. C., Boehlert, B., Fant, C., Bierman Jr, V. J., Henderson, J., Mills, D., ... & Strzepek, K. M. (2017). Climate change impacts on harmful algal blooms in US freshwaters: a screening-level assessment. *Environmental science & technology*, *51*(16), 8933-8943.
- 5. One Health Harmful Algal Bloom System: https://www.cdc.gov/habs/ohhabs.html
- 6. National Centers for Coastal Ocean Science *Vibrio vulnificus* model: https://products.coastalscience.noaa.gov/vibrioforecast/vulnificus/chesapeake/probability/main.aspx
- 7. Vezzulli, L., Grande, C., Reid, P. C., Hélaouët, P., Edwards, M., Höfle, M. G., ... & Pruzzo, C. (2016). Climate influence on Vibrio and associated human diseases during the past half-century in the coastal North Atlantic. *Proceedings of the National Academy of Sciences*, *113*(34), E5062-E5071.
- 8. Baker-Austin, C., Trinanes, J. A., Taylor, N. G., Hartnell, R., Siitonen, A., & Martinez-Urtaza, J. (2013). Emerging Vibrio risk at high latitudes in response to ocean warming. *Nature Climate Change*, *3*(1), 73.